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ABSTRACT: In this paper, we discussed a Refinement of Reaccelerated over Relaxation (RROR)
method for solving linear system of equations is introduced and also, it is shown that this method is
superior to the well known ROR, SOR, Gauss-Seidal and Jacobi methods through some numerical
examples.
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1. INTRODUCTION:
For solving numerically the linear system of equations
AX =b...(1.1)
where A is non-singular with non-vanishing diagonal elements of over nxn, X and b are unknown and
known n-dimensional vectors. We split the coefficient matrix ‘A’without any loss of generality, as
A=D-L-U...(1.2)

Where D is the diagonal matrix, L and U are strictly lower and upper triangular parts of A,
Then the system (1.1) takes the form

AX =b ..(13)
The Accelerated over relaxation(AOR) method for solving (1.3) is

-1 A

X =(1-wL) {(1=r)1+(r-@)L+rUfx" +r(1-0L) b..04

The method's Successive over relaxation (SOR), Gauss-Seidal(G.S) and Jacobi can be realised from (1.4)
for the choice of 7 and @ as

(r,0),(w,0),(1,1),(1,0)...(1.5

The iteration matrices of the above matrices are:

AOR=M, , =(I—a)L)_] {(1=r)1+(r-@)L+rU}..(6)
SOR=S_ = (1 — a)L)_] {(1 —w)l + a)U} ~(1.7)
Gauss-Seidal=G.S = ([ —L)_] U..(1.38)

Jacobi =J:(L+U) . (1.9)
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whose spectral radii are given by

—2

when 4=0 (or) 1—u <1-4° (0r)0<,u<; ...(1.9.1)

y7i

2 . _
(1+\/1—;2j
S(M,,)=40 when p=y1 -(1.9.2)

-1 - [
= when 0<u<u (or)1-p" <y1-u -(1.9.3)
,/1—3 (1 \/l—y j

2
+

—2
S(GS)=p ...(1.11)
S(J)=p...(1.12)
Where £ and ,1_1 are the smallest and the largest eigen values of Jacobi matrix in magnitude.
Reaccelerated over relaxation (ROR) method for solving (1.3) developed by V.B.Kumar, Vatti et.al [5] is
given by

-1 A

X =R X (r=ro)(I-oL) b..(113)

Whose iteration matrix is

-1
R, =(1—a)L) {(1—r+m))l+(r—a)—m))L+(r—ra))U} ... (1.14)

2. REFINEMENT OF REACCELERATED OVER RELAXATION(RROR) METHOD
Multiply both sides of the equation (1.3) by (r — ra)) we obtain

(r—rw)AX:(r—ra))ZA)

(1-oL)x =(1-0L) X +(r-re)(b-ax)

X=X+(r—ra))(1—a)L)_l (B—AX) L2
Now, the refinement of ROR method is defined as

X0 = X (r—re)(1 —a)L)_l (b-ax") . 2)
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-1 A~

X(n+1) — Rr,wX(n) + (}" - ra))([ — C()L) b

+(r—ra))(1—a)L)_1 (IA)—(I—L—U)(RWX(") +(I’—ra))(1—a)L)_1 ZA)D

-1 A

= X" =R X" 42(r-re)(l-oL) b

—(]—a)L)il ((r=re@)1~(r-ro)L—(r —ra))U)(Rr’wX(”) +(r—ra))(l—a)L)7l Z;)

-1 A~

= X" =R X" +2(r-ro)(1-oL) b

(1-oL)’ ((1—1mL_a)L)+(r_m)1_(r_m)/:_(r_m)u)[ze,wxw t(r-ro)(1-oL)’ 13)

-1 A~

= X" =R X" 42(r-ro)(I-wL) b

—(I—a)L)i1 ((1—0)L)—{(1—r+ra))1+(r—a)—ra))L+(r—ra))U})(R,,,wX(") +(r—ra))(1—a)L)léj

= X" =R X" 4 (r-re)R,, (I - wL)il b+(r —m)(l - “’LTL b
-1 A

=X =R X"+ (r—ro)(1-oL) b(I+R,,)

o .. (2.3)
(n=0,1,2,...)

= x" = px" 40
is the refinement of ROR method for the solution of (1.3)
Where P = Pz,é = (r—ra))(IJrP)Q

-1 A
Here P=R,, and 0 =(I-oL) b
3. CONVERGENCE OF REFINEMENT OF ACCELERATED OVER
RELAXATION(RROR) METHOD
Theorem 3.1: Let A be irreducible matrix with weak diagonal dominance. Then RROR method converges
for any arbitrary choice of the initial approximation.

% —(n+l
Proof:Let X Dbe the exact solution and if X e )be the (n+1)"approximation to the solution of (1.3) by

the method (2.2)
Now
H}(;ﬁl) —X* _ HX(/HI) +(}” —I"(())([ —0)L)71 (Z; —AX)_X*H

< HX(””) —X*H 4 (r —ra))([ - a)L)il

(b-4x]

( HX(””) —X*H 5 0and H(b—AX)H N 0)
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—(n+1)

X —X->0

Therefore, refinement of ROR method converges to the solution of the linear system (1.3)

Theorem 3.2: if A is irreducible matrix with weak diagonal dominance , then H;’H = ||P||2oo <1

Proof: [P R =|Pf, <1

r,w

_ 2
© - HRr,(u

0 ‘

Theorem 3.3: if A is irreducible matrix with weak diagonal dominance, then H?’H = ||P||QO

Proof: H;’ :‘sz
[T
2
=PI, <117
4. NUMERICAL EXAMPLES:
1o L1
5 5
1 11
01T T
Example 4.1:If 4= 6 1 which is considered by G.Avdelas and A. Hadjimos [1]
— = 1 0
5 5
1
2 - 0 1
L 5 i
1.4
5.2 \23 \24 \23
and b= 44 then the eigenvalues of the Jacobi matrix are T—— and * 5 and hence u =T ,
3.2
- 24 .. . g . -
M= T It can be seen that the condition given by G. Avdelas and A.Hadjidimos [1] i.e., 0< u<pu

—2
and 1— 4 < \1—u are satisfied.Spectral radius of AOR iteration matrix is but not

J246 J46
12

Spectral radius of different methods with their choices

S.No. Method Choices of parameters Spectral radius
5
1 ROR o= 3’ r=—4.03 0.56892569
5
2 RROR o= 5, r=-4.03 0.32367644
5 14
3 AOR a)=§,r=? 0.75129518
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5 14
4 RAOR O=2.r== 0.56444445
5 5 2
5 SOR w==,r=— =
3 3 3
5 5 4
6 RSOR O==,r=— —
3 3 9
7 G.S - 0.96
RG.S - 0.9216
8 J - 0.97979590
9 RJ - 0.96000001

5. CONCLUSION:

Reducing the spectral radius of the iteration matrix corresponds to an increased rate of convergence for
the numerical solution of the system of linear equations.

S(R.,’)<S(R,)<S(M,})<S(M,,)<S(S,})<p(S,)

<S(G.8*)<S8(GS)<S(J*)<S8(J)<1
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